- Ooijen, J. A. C. van, Reedijk, J. & Spek, O. L. (1979). J. Chem. Soc. Dalton Trans. pp. 1183–1186.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Valle, G., Sánchez González, A. & Ettorre, R. (1991). Acta Cryst. C47, 1392–1394.

Acta Cryst. (1993). C49, 1300-1303

Hexaaquadisodium Hexakis(tetramethylammonium) Bis[bis(3-acetylamino-4hydroxyphenylarsonato)aquaoctadecaoxohexamolybdate] Decahydrate: $[Na_2(H_2O)_6][(CH_3)_4N]_6[Mo_6(C_8H_8-AsNO_5)_2O_{18}(H_2O)]_2.10H_2O$

XIAO-ZENG YOU AND HAI-LIAN LI

Coordination Chemistry Institute, Nanjing University, Nanjing, 210008, People's Republic of China

KAI-BEI YU AND LIU LI

Chendu Analysis Center of the Academy of Sciences of China, 610041, People's Republic of China

(Received 13 March 1992; accepted 24 December 1992)

Abstract

Di- μ -aqua-tetraaquadisodium hexakis(tetramethylammonium) bis[μ_4 -(3-acetylamino-4-hydroxyphenylarsonato)-1:2 $\kappa^2 O, 3\kappa O', 6\kappa O''-\mu_6$ -(3-acetylamino-4-hydroxyphenylarsonato)-1:6 $\kappa^2 O, 2:3\kappa^2 O', 4:5\kappa^2 O''-\mu$ -aqua-4:5 $\kappa^2 O$ hexa- μ -oxo-1:2 $\kappa^2 O, 1:6\kappa^2 O, 2:3\kappa^2 O, 3:4\kappa^2 O, 4:5\kappa^2 O;$ -5:6 $\kappa^2 O$ -dodecaoxo-1 $\kappa^2 O, O'; 2\kappa^2 O, O'; 3\kappa^2 O, O'; 4\kappa^2 O, O';$ - $5\kappa^2 O, O'; 6\kappa^2 O, O'$ -hexamolybdate decahydrate {dimer of [Na(H₂O)₃][(CH₃)₄N]₃[Mo₆(C₈H₈AsNO₅)₂O₁₈(H₂O)]} has been crystallized. The unit cell contains two [Mo₆(C₈H₈AsNO₅)₂O₁₈(H₂O)]⁴⁻ complex anions linked by two Na⁺ cations associated with six water molecules, six [(CH₃)₄N]⁺ cations and another ten water molecules of hydration.

Comment

Polyoxomolybdates are oxo transfer catalysts, potential photosensitizers and electron relay species in the redox cycle. The synthesis, solution properties, and structure of a series of polymolybdate anions based on monoalkyland monoarylarsonates $(RAsO_3)^{2-}$ have been studied

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved previously by Adams, Klemperer & Liu (1979), Zonnevijlle & Pope (1979), and You, Chen, Xu & Huang (1989).

The molecular structure consists of $[(CH_3)_4N]^+$ cations, $[Mo_6(C_8H_8AsNO_5)_2O_{18}(H_2O)]^{4-}$ anions and Na⁺ cations coordinated by water molecules and the carbonyls of the acetyl groups. The molybdate anions are linked by the $[Na_2(H_2O)_6]^{2+}$ cation *via* the carbonyl O atoms O(29) and O(29') to form an $\{[Na_2(H_2O)_6][Mo_6-(C_8H_8AsNO_5)_2O_{18}(H_2O)]_2\}^{6-}$ dimer lying on a centre of symmetry (Figs. 1 and 2).

The anion may be viewed as six distorted octahedra joined together by shared edges to form an approximately flat metal oxide ring, which is capped, top and bottom, by 3-acetylamino-4-hydroxyphenylarsonate ligands. The water molecule H₂O(18) bridges the Mo atoms Mo(4) and Mo(5) in place of the arsonate O atoms O(14) and O(25), which only singly coordinate to Mo atoms Mo(3) and Mo(6), respectively $[O(14) \cdots MO(4) = 4.342,$ $O(25) \cdots MO(5) = 3.845$ Å]. This results in the loss of the

Fig. 1. Structure of the $[Mo_6(C_8H_8AsNO_5)_2O_{18}(H_2O)]^{4-}$ anion.

Fig. 2. View of the $\{ [Na_2(H_2O)_6] [MO_6(C_8H_8AsNO_5)_2O_{18}(H_2O)]_2 \}^{6-dimer.}$

approximate D_{3d} symmetry of the anion. (The three O atoms of the other RAsO₃ group bridge two Mo atoms each.) The distances between the water molecule and the two Mo atoms are 2.506 (4) [O(18)-Mo(4)] and 2.502 (4) Å [O(18)-Mo(5)], longer than other Mo-O distances. O(30) and O(37) are water molecules. The average distances for Mo-O(terminal), Mo-O(doubly shared) and Mo-O(triply shared) bonds are 1.699 (4), 1.920 (3) and 2.314 (4) Å, respectively. The geometry around the As atoms is very close to tetrahedral with angles in the RAsO₃ group ranging from 106.5 (2) to $112.6(2)^\circ$; the average As—C distance of 1.907(5) Å and the average As-O distance of 1.686 (5) Å are consistent with values found in free organoarsonate.

Experimental

Crystal data
[Na ₂ (H ₂ O) ₆][(CH

	Tr 0001 (1) 13	0(0)
$[Na_2(H_2O)_6][(CH_3)_4N]_6-$	$V = 2921 (1) A^3$	O(7)
[Mo ₆ (C ₈ H ₈ AsNO ₅) ₂ -	Z = 1	O(8)
$O_{18}(H_2O)]_2.10H_2O$	$D_{\rm x} = 2.07 {\rm Mg} {\rm m}^{-3}$	O(9)
M = 3634.70	Mo radiation	O(10)
$m_r = 5054.70$	$\lambda = 0.71073$ Å	O(11)
Inclinic	x = 0.71075 A	O(12)
P1	Cell parameters from 25	O(13)
a = 11244(3) Å	reflections	O(14)
h = 12.775(2) Å	$\theta = 3 - 12^{\circ}$	O(15)
D = 12.773(2) A	$u = 2.445 \text{ mm}^{-1}$	O(16)
c = 21.050 (5) A	$\mu = 2.443 \text{ mm}$	O(17)
$\alpha = 97.26 (2)^{\circ}$	T = 295 K	O(18)
$\beta = 103.03.(2)^{\circ}$	Rectangular	O(19)
$r = 80.84 (2)^{\circ}$	Light vellow	O(20)
$\gamma = 69.64(2)$		O(21)
		O(22)
		O(23)
Data callestion		O(24)
Data collection		O(25)
Nicolet R3m/E diffractome-	$R_{\rm int} = 0.0379$	O(26)
ter	$\theta_{max} = 22.5^{\circ}$	O(27)
	h = 0 13	O(28)
0/20 scans	$n = 0 \rightarrow 15$	O(29)

Absorption correction:	$k = -14 \rightarrow 14$
none (Lorentz-polarization	$l = -23 \rightarrow 23$
corrections were applied)	2 standard reflections
8324 measured reflections	monitored every 98
8156 independent reflections	reflections
5165 observed reflections	intensity variation:
$[I \ge 3.0\sigma(I)]$	

	C(4)	-0.2040 (0)	-0.5060 (4)	-0.4458 (2)	0.027 (1)
	C(5)	-0.1682(6)	-0.5257 (4)	-0.4654 (2)	0.027(1)
$(\Lambda / \sigma)_{max} = -0.140$	C(6)	-0.0795 (6)	-0.4598 (4)	-0.4215 (2)	0.024 (1)
	C(7)	-0.3876 (7)	-0.6757 (5)	-0.3417 (3)	0.042 (1)
$\Delta \rho_{\rm max} = 0.994 \ {\rm e} \ {\rm A}^{-3}$	C(8)	-0.4913 (8)	-0.6946 (6)	-0.3113 (4)	0.060(1)
$\Delta_{0} = -0.924 e^{-3}$	C(9)	0.2803 (6)	-0.1211 (4)	-0.0579 (2)	0.020 (1)
$\Delta p_{\rm min} = -0.924 \ C R$	C(10)	0.3529 (6)	-0.1506 (4)	-0.0017 (2)	0.021 (1)
Extinction correction: Larson	C(11)	0.4024 (6)	-0.0755 (4)	0.0514 (3)	0.022 (1)
(1967)	C(12)	0.3757 (6)	0.0319 (4)	0.0472 (2)	0.024 (1)
	C(13)	0.3023 (6)	0.0605 (4)	-0.0095 (3)	0.028 (1)
Extinction coefficient:	C(14)	0.2549 (6)	-0.0159 (4)	-0.0629 (2)	0.025 (1)
0.00034	C(15)	0.5524 (6)	-0.1782 (4)	0.1212 (3)	0.032 (1)
Atomic scattering factors	C(16)	0.6213 (7)	-0.1806 (5)	0.1901 (3)	0.047 (1)
from International Tables	C(17)	0.0445 (8)	0.3054 (5)	-0.3894 (4)	0.069 (1)
from International Tables	C(18)	-0.0017 (7)	0.2292 (5)	-0.2970 (3)	0.052 (1)
for X-ray Crystallography	C(19)	-0.0625 (8)	0.1342 (7)	-0.4065 (4)	0.082 (1)
(1974, Vol. IV)	C(20)	0.1528 (8)	0.1554 (7)	-0.3512 (4)	0.077 (1)
	$(\Delta/\sigma)_{max} = -0.140$ $\Delta\rho_{max} = 0.994 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.924 \text{ e } \text{\AA}^{-3}$ Extinction correction: Larson (1967) Extinction coefficient: 0.00034 Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)	$\begin{array}{c} (\Delta/\sigma)_{\max} = -0.140 & C(6) \\ C(5) \\ (\Delta\rho_{\max} = 0.994 \text{ e } \text{\AA}^{-3} & C(8) \\ \Delta\rho_{\min} = -0.924 \text{ e } \text{\AA}^{-3} & C(9) \\ Extinction correction: Larson \\ (1967) & C(10) \\ Extinction coefficient: & C(13) \\ C(13) \\ C(14) \\ 0.00034 & C(15) \\ Atomic scattering factors & C(16) \\ from International Tables \\ for X-ray Crystallography \\ (1974, Vol. IV) & C(20) \\ \end{array}$	$\begin{array}{ccccc} (24) & -0.2840 \ (6) \\ (C(5) & -0.1682 \ (6) \\ (C(5) & -0.0795 \ (6) \\ (C(7) & -0.3876 \ (7) \\ \Delta \rho_{max} = 0.994 \ e \ Å^{-3} & C(8) \\ \Delta \rho_{min} = -0.924 \ e \ Å^{-3} & C(9) \\ \Delta \rho_{min} = -0.924 \ e \ Å^{-3} & C(9) \\ (1967) & C(10) & 0.3529 \ (6) \\ Extinction correction: Larson \\ (1967) & C(12) & 0.3757 \ (6) \\ Extinction coefficient: \\ C(13) & 0.3023 \ (6) \\ C(13) & 0.3023 \ (6) \\ C(14) & 0.2549 \ (6) \\ 0.00034 & C(15) & 0.5524 \ (6) \\ Atomic scattering factors \\ from International Tables \\ for X-ray Crystallography \\ C(18) & -0.0017 \ (7) \\ for X-ray Crystallography \\ C(19) & -0.0625 \ (8) \\ \end{array}$	$\begin{array}{cccccc} C(4) & -0.2646 (6) & -0.5267 (4) \\ C(5) & -0.1682 (6) & -0.5257 (4) \\ C(5) & -0.0795 (6) & -0.4598 (4) \\ C(7) & -0.3876 (7) & -0.6757 (5) \\ \Delta \rho_{max} &= 0.994 \ e \ {\rm \AA}^{-3} & C(8) & -0.4913 (8) & -0.6946 (6) \\ \Delta \rho_{min} &= -0.924 \ e \ {\rm \AA}^{-3} & C(9) & 0.2803 (6) & -0.1211 (4) \\ C(10) & 0.3529 (6) & -0.1506 (4) \\ Extinction correction: Larson & C(11) & 0.4024 (6) & -0.0755 (4) \\ (1967) & C(12) & 0.3757 (6) & 0.0319 (4) \\ Extinction coefficient: & C(13) & 0.3023 (6) & 0.0605 (4) \\ 0.00034 & C(15) & 0.5524 (6) & -0.0159 (4) \\ 0.00034 & C(15) & 0.5524 (6) & -0.0159 (4) \\ Atomic scattering factors & C(16) & 0.6213 (7) & -0.1806 (5) \\ from International Tables & C(17) & 0.0445 (8) & 0.3054 (5) \\ for X-ray Crystallography & C(18) & -0.00625 (8) & 0.1342 (7) \\ (1974, Vol. IV) & C(20) & 0.1528 (8) & 0.1554 (7) \\ \end{array}$	$\begin{array}{ccccc} C(4) & -0.2048(6) & -0.5287(4) & -0.4438(2) \\ C(5) & -0.1682(6) & -0.5257(4) & -0.4654(2) \\ C(5) & -0.1682(6) & -0.5257(4) & -0.4654(2) \\ \hline (\Delta/\sigma)_{max} = -0.140 & C(6) & -0.0795(6) & -0.4598(4) & -0.4215(2) \\ \hline (\Delta\rho_{max} = 0.994 e Å^{-3} & C(8) & -0.4913(8) & -0.6946(6) & -0.3113(4) \\ \hline \Delta\rho_{min} = -0.924 e Å^{-3} & C(9) & 0.2803(6) & -0.1211(4) & -0.0579(2) \\ C(10) & 0.3529(6) & -0.1506(4) & -0.0017(2) \\ \hline Extinction correction: Larson & C(11) & 0.4024(6) & -0.0159(4) & -0.0017(2) \\ \hline Extinction coefficient: & C(13) & 0.3023(6) & 0.0605(4) & -0.0095(3) \\ (1967) & C(12) & 0.3757(6) & 0.0319(4) & 0.0472(2) \\ \hline 0.00034 & C(15) & 0.5524(6) & -0.1782(4) & 0.1212(3) \\ \hline Atomic scattering factors & C(16) & 0.6213(7) & -0.1806(5) & 0.1901(3) \\ from International Tables & C(17) & 0.0445(8) & 0.3054(5) & -0.3894(4) \\ from International Tables & C(18) & -0.0625(8) & 0.1342(7) & -0.4065(4) \\ (1974, Vol. IV) & C(20) & 0.1528(8) & 0.1554(7) & -0.3512(4) \\ \end{array}$

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

an other Mo-		x	у	Z	Ueq
molecules. The	Mo(1)	-0.1107(1)	-0.2122 (1)	-0.1657 (1)	0.024(1) 0.024(1)
Mo-O(doubly	MO(2) Mo(3)	0.0020(1) 0.2751(1)	-0.4328(1) -0.4869(1)	-0.1850(1)	0.024(1) 0.023(1)
1.10 - 0.(000001)	Mo(3)	0.3318 (1)	-0.3942(1)	-0.3330(1)	0.025 (1)
S alt 1.099 (+),	Mo(5)	0.1769 (1)	-0.1926 (1)	-0.3867 (1)	0.028 (1)
. The geometry	Mo(6)	0.0433 (1)	-0.0757 (1)	-0.2471 (1)	0.022 (1)
tetrahedral with	As(1)	0.0313 (1)	-0.3517 (1)	-0.2939 (1)	0.016(1)
om 106.5 (2) to	As(2)	0.2117 (1)	-0.2257(1)	-0.1301(1)	0.018(1)
$f = 1.007 (5) \overset{\circ}{\Delta} and$	Na N(1)	-0.3752(5)	-0.5857(2) -0.5803(3)	-0.3592(2)	0.026(1)
1.907 (5) A and	N(2)	0.4762 (5)	-0.0979(3)	0.1118 (2)	0.029 (1)
A are consistent	N(3)	0.0332 (5)	0.2053 (4)	-0.3617 (2)	0.036(1)
	N(4)	-0.0758 (5)	0.1901 (4)	-0.0942 (2)	0.036 (1)
	N(5)	0.3490 (6)	0.2019 (4)	-0.5528 (3)	0.058 (1)
	0(1)	-0.2436 (5)	-0.1825(3)	-0.2154(2)	0.040(1)
	O(2)	-0.1370(3) -0.1247(4)	-0.1691(3) -0.3628(3)	-0.1861(2)	0.038(1)
	O(3)	0.0763 (4)	-0.2762(2)	-0.1226(2)	0.019(1)
	O(5)	-0.0342 (4)	-0.2406 (3)	-0.2686 (2)	0.020 (1)
13	O(6)	-0.0100 (4)	-0.0937 (3)	-0.1684 (2)	0.025 (1)
I) A ⁻	O(7)	-0.0266 (5)	-0.4501 (3)	-0.0710 (2)	0.041 (1)
3	O(8)	-0.0646 (5)	-0.5679 (3)	-0.1883 (2)	0.038(1)
√lg m [−]	0(9)	0.1097 (4)	-0.4923(3) -0.4187(3)	-0.1230(2) -0.2301(2)	0.028(1)
n	O(10)	0.4077(4)	-0.5211(3)	-0.1364(2)	0.034 (1)
3 Å	O(12)	0.2301 (4)	-0.5992 (3)	-0.2373 (2)	0.036 (1)
eters from 25	O(13)	0.3332 (4)	-0.4118 (3)	-0.2470 (2)	0.027 (1)
S	O(14)	0.3088 (4)	-0.3249 (3)	-0.1289 (2)	0.025 (1)
	O(15)	0.2821 (5)	-0.5133 (3)	-0.3750 (2)	0.039(1)
nm ⁻¹	O(16)	0.4859 (5)	-0.3933 (4)	-0.3287(2) -0.4037(2)	0.043(1)
	O(17)	0.2852 (4)	-0.2038(3)	-0.2852(2)	0.029 (1)
-	O(19)	0.1417 (4)	-0.3285 (2)	-0.3335 (2)	0.018 (1)
37	O(20)	0.2519 (5)	-0.0951 (4)	-0.4116 (2)	0.055 (1)
w	O(21)	0.0529 (5)	-0.2226 (3)	-0.4493 (2)	0.046 (1)
	O(22)	0.1090 (4)	-0.1161(3)	-0.3236 (2)	0.028 (1)
	O(23)	0.1288 (4)	-0.0369(3)	-0.2109(2) -0.2887(2)	0.035(1)
	O(24)	0.1959 (4)	-0.1720(3)	-0.2009(2)	0.021 (1)
0	O(26)	-0.3503 (4)	-0.6331 (3)	-0.4866 (2)	0.038 (1)
0	O(27)	-0.3131 (6)	-0.7446 (4)	-0.3511 (3)	0.066 (1)
2	O(28)	0.4235 (4)	0.0989 (3)	0.1010 (2)	0.036 (1)
) 14	O(29)	0.5636 (5)	-0.2456 (3)	0.0765 (2)	0.048 (1)
→ 14 22	O(30)	0.7969 (7)	-0.3908 (7)	-0.0031(4)	0.117(1) 0.043(1)
+ 23	O(31)	0.3339 (3)	-0.3031(3) -0.4283(3)	-0.0931(2) -0.0005(2)	0.043(1) 0.048(1)
reflections	O(32)	-0.3645 (5)	-0.4246(4)	-0.1960 (2)	0.050 (1)
d every 98	O(34)	0.5360 (5)	-0.0629 (4)	-0.2446 (3)	0.049 (1)
ions	O(35)	0.6374 (6)	-0.6150 (4)	-0.1336 (3)	0.069 (1)
variation: <1.5%	O(36)	0.3296 (6)	-0.9438 (4)	-0.3151 (3)	0.068 (1)
	O(37)	0.4144 (9)	0.0656 (8)	0.3948 (6)	0.170(1)
	C(1)	-0.0904 (0)	-0.4381(4) -0.4801(4)	-0.3353(2) -0.3361(2)	0.021(1)
	C(2)	-0.2729(6)	-0.5434(4)	-0.3804(2)	0.023 (1)
	C(4)	-0.2646 (6)	-0.5686 (4)	-0.4458 (2)	0.027 (1)
	C(5)	-0.1682 (6)	-0.5257 (4)	-0.4654 (2)	0.027 (1)
-0.140	C(6)	-0.0795 (6)	-0.4598 (4)	-0.4215 (2)	0.024 (1)
$004 \circ h^{-3}$	C(7)	-0.3876 (7)	-0.6757 (5)	-0.3417 (3)	0.042 (1)
994 CA	C(8)	-0.4913 (8) 0.2803 (6)	-0.0946 (6) -0.1211 (4)	-0.5115 (4) -0.0579 (2)	0.000(1)
$0.924 e A^{-3}$	C(0)	0.2803 (0)	-0.1506(4)	-0.0017(2)	0.021 (1)
correction: Larson	C(11)	0.4024 (6)	-0.0755 (4)	0.0514 (3)	0.022 (1)
	C(12)	0.3757 (6)	0.0319 (4)	0.0472 (2)	0.024 (1)
coefficient [.]	C(13)	0.3023 (6)	0.0605 (4)	-0.0095 (3)	0.028 (1)
coemerciant.	C(14)	0.2549 (6)	-0.0159 (4)	-0.0629 (2)	0.025 (1)
	C(15)	0.5524 (6)	-0.1782(4)	0.1212(3)	0.032(1)
ttering factors	C(16)	0.0213(7) 0.0445(8)	-0.1800 (5) 0.3054 (5)	-0.1901(3) -0.3894(4)	0.047(1)
ernational Tables	C(18)	_0.0017 (7)	0.2292 (5)	-0.2970 (3)	0.052 (1)

REGULAR STRUCTURAL PAPERS

C(21) -0.	1740 (8)	0.1654 (7)	-0.1552 (4)	0.071 (1)	O(11)-Mo(3)-O(13)	102.0 (2)	O(12)-Mo(3)-O(13)	96.3 (2)
C(22) -0.	1080 (7)	0.2847 (5)	-0.0529(3)	0.050 (1)	O(9)—Mo(3)—O(14)	79.6 (2)	O(10)—Mo(3)—O(14)	83.0(1)
C(23) -0.	0606 (7)	0.0987 (5)	-0.0561 (3)	0.048 (1)	O(11)—Mo(3)—O(14)	87.1 (2)	O(12)-Mo(3)-O(14)	169.6 (2)
C(24) 0.	0426 (8) 2564 (10)	0.2135 (6)	-0.1124 (4)	0.059(1)	O(13) - Mo(3) - O(14)	78.9 (1)	O(13) - Mo(4) - O(15)	103.2 (2)
C(25) = 0.	3386 (11)	0.2949 (8)	-0.5011 (6)	0.127(1) 0.120(1)	O(13) - MO(4) - O(16)	99.4 (2)	O(15) - Mo(4) - O(16)	103.9 (2)
C(20) = 0. C(27) = 0.	2466 (10)	0.2340(9) 0.1330(9)	-0.5539(6)	0.139(1)	O(15) - MO(4) - O(17)	147.1(2)	O(13) - MO(4) - O(17) O(13) - Mo(4) - O(18)	99.7(2)
C(28) 0.	4621 (11)	0.1461 (10)	-0.5402 (8)	0.162(1)	O(10) - MO(4) - O(17) O(15) - MO(4) - O(18)	162 55 (2)	O(15) = MO(4) = O(18) O(16) = Mo(4) = O(18)	91.2(1)
-()			0.0 .02 (0)	01102(1)	O(13) - MO(4) - O(18)	70.3 (1)	O(13) - Mo(4) - O(19)	84 1 (2)
т	11 0 0	. •			O(15)-Mo(4)-O(19)	96.0 (2)	O(16) - Mo(4) - O(19)	158.3 (2)
18	ible 2. Geor	netric pa	rameters (A, °)		O(17)-Mo(4)-O(19)	70.3 (2)	O(18)-Mo(4)-O(19)	67.4 (1)
Mo(1)-O(1)	1.692	(4) Mo	(1)—O(2)	1.697 (4)	O(17)Mo(5)O(18)	70.6 (1)	O(17)-Mo(5)-O(19)	71.2 (2)
Mo(1)-O(3)	1.917	(3) Mo	(1)—O(4)	2.287 (4)	O(18)Mo(5)O(19)	67.9 (1)	O(17)—Mo(5)—O(20)	97.3 (2)
Mo(1)-O(5)	2.491	(4) Mo	(1)O(6)	1.907 (4)	$O(18) - M_0(5) - O(20)$	93.8 (2)	O(19)—Mo(5)—O(20)	160.6 (2)
Mo(2)O(3)	1.937	(4) Mo	(2)—O(4)	2.359 (3)	O(17) - Mo(5) - O(21)	101.9 (2)	O(18) - Mo(5) - O(21)	161.5 (2)
Mo(2)O(7)	1.696	(4) Mo	(2)—O(8)	1.698 (4)	O(19) - MO(5) - O(21) O(17) Mo(5) - O(22)	93.8 (2)	O(20) - Mo(5) - O(21)	104.1 (2)
Mo(2) = O(9)	1.913	(5) Mo	(2) - O(10)	2.275 (4)	O(19) - MO(5) - O(22)	$\frac{143.2}{873(1)}$	O(18) - MO(3) - O(22) O(20) - Mo(5) - O(22)	101 1 (2)
Mo(3) = O(9) Mo(3) = O(11)	1.924	(5) MO	(3) - O(10)	2.308 (4)	O(21) - MO(5) - O(22)	101.8 (2)	$O(5) - M_0(6) - O(6)$	77.2(1)
$M_0(3) = O(11)$ $M_0(3) = O(13)$	1 938	(4) Mo	(3) = O(12) (3) = O(14)	2 237 (3)	O(5) - Mo(6) - O(22)	83.7 (2)	O(6) - Mo(6) - O(22)	157.1 (1)
Mo(4) - O(13)	1.849	(4) Mo	(4) - O(15)	1.688 (4)	O(5)-Mo(6)-O(23)	165.9 (2)	O(6)-Mo(6)-O(23)	97.3 (2)
Mo(4)-O(16)	1.715	(6) Mo	(4)—O(17)	1.955 (4)	O(22)-Mo(6)-O(23)	98.3 (2)	O(5)-Mo(6)-O(24)	90.6 (2)
Mo(4)O(18)	2.506	(4) Mo	(4)—O(19)	2.292 (4)	O(6)—Mo(6)—O(24)	96.5 (2)	O(22)-Mo(6)-O(24)	96.1 (2)
Mo(5)-O(17)	1.942	(4) Mo	(5)-0(18)	2.502 (4)	O(23)—Mo(6)—O(24)	102.9 (2)	O(5)Mo(6)O(25)	76.0 (1)
Mo(5)O(19)	2.263	(3) Mo	(5)—O(20)	1.705 (5)	O(6) - Mo(6) - O(25)	81.3 (2)	O(22) - Mo(6) - O(25)	81.9 (1)
Mo(5)—O(21)	1.695	(4) Mo	(5)—O(22)	1.851 (4)	O(23) - MO(6) - O(25)	90.5 (2)	O(24) - Mo(6) - O(25)	166.6 (2)
MO(6) - O(5)	2.235	(3) Mo	(6)—O(6)	1.923 (4)	O(3) = AS(1) = O(10) O(10) = As(1) = O(10)	111.0(2) 100.7(2)	O(5) = As(1) = O(19)	112.6 (2)
$M_0(6) = O(22)$ $M_0(6) = O(24)$	1.932	(4) MO	(6) - O(23)	1.702 (4)	O(10) = As(1) = O(19)	109.7(2) 108.8(2)	O(3) - As(1) - C(1)	108.2(2) 1065(2)
$A_{s(1)} = O(24)$	1.679	(4) As((0) - O(23)	1 690 (3)	O(4) - As(2) - O(14)	107.2 (2)	O(4) - As(2) - O(25)	111.4(2)
As(1) - O(19)	1.690	(4) As((1) - C(1)	1.903 (5)	O(14)—As(2)—O(25)	110.1 (2)	O(4) - As(2) - C(9)	111.9 (2)
As(2)—O(4)	1.703	(4) As(2)—O(14)	1.669 (4)	O(14) - As(2) - C(9)	107.4 (2)	O(25)—As(2)—C(9)	108.8 (2)
As(2)O(25)	1.692	(3) As(2)—C(9)	1.912 (4)	O(29)—Na—O(30)	108.9 (3)	O(29)-Na-O(31)	98.6 (2)
Na-O(29)	2.240	(5) Na-	-O(30)	2.324 (9)	O(30)NaO(31)	87.6 (3)	O(29)—Na—O(32)	85.0 (2)
Na-O(31)	2.418	(5) Na-	-O(32)	2.417 (7)	O(30) - Na - O(32)	165.2 (2)	O(31) - Na - O(32)	95.7 (2)
Na - Na N(1) - C(2)	3.527	(6) Na-	$-O(32^{\circ})$	2.388 (5)	O(29)—Na—Na O(31) Na Na'	118.0(2)	O(30)—Na—Na ² O(32) Na Na ²	123.2 (2)
N(1) = C(3) N(2) = C(11)	1.425	(9) N(1 (6) N(2	() - C(1)	1.334 (8)	O(31) - Ina - Ina - O(32')	113.0(2)	O(32)	42.5 (1)
N(2) - H(n2)	0.939	(0) $N(2)$ (19) $N(3)$	D = C(17)	1.340 (8)	O(31) - Na - O(32')	141.4(2) 1195(2)	O(32)-Na- $O(32')$	85 6 (2)
N(3) - C(18)	1.494	(9) N(3	-C(19)	1.485 (9)	0(01) 110 0(02)	119.5 (2)	O(32) $I(a = O(32))$	05.0 (2)
N(3)C(20)	1.470	(11) N(4)C(21)	1.493 (8)	The title commonly			1
N(4)—C(22)	1. 491	(8) N(4)—C(23)	1.487 (8)	The title compound	was prepa	ared as follows: a so	Siution of
N(4)C(24)	1.506	(11) N(5)—C(25)	1.495 (13)	sodium molybdate	(10.9 g, t	0.045 mol) and 4-h	ydroxy-3-
N(5)—C(26)	1.481	(15) N(5	-C(27)	1.445 (14)	acetylarsanilic acid	(3.7 g, 0.01)	3 mol) in 100 ml of \cdot	water was
N(3) = C(28) O(26) = H(a26)	1.444	(14) O(2)	(6) - C(4)	1.341 (7)	adjusted to pH 4.7	with dilute	sulfuric acid; after	the solu-
O(28) = C(12)	1 3 3 8	(24) O(2)	$H(a_{2}^{2})$	1.242 (9)	tion had been boiled	1 for 20 min	n, tetramethylammon	ium chlo-
O(29) - C(15)	1.221	(0) O(2) (7) C(1))C(6)	1 414 (7)	ride (6.6 g, 0.06 m	ol) was dis	solved in the warm	solution:
C(1)C(2)	1.361	(9) C(2)—H(2)	0.970 (24)	the pH of the result	ing solution	was adjusted to 4	7 with di-
C(2)—C(3)	1.374	(7) C(4)—C(5)	1.381 (10)	lute sulfuric acid th	hen the solu	ition was boiled for	o further
C(3)—C(4)	1.398	(7) C(5)—H(5)	1.014 (24)	10 minu the het colu	tion use fl	terrori was borred for	a iuiuiei
C(5)—C(6)	1.397	(7) C(7)—C(8)	1.484 (12)	it many the not solu	uon was m		evaporate
C(6) - H(6)	0.974	(22) C(9	-C(14)	1.386 (7)	at room temperature	, yielding a	l large number of we	shaped
C(9) - C(10)	1.372	(7) $C(1)$	(10) - H(10)	1.032 (17)	light-yellow crystals	s within a f	tew days. Analysis o	calculated
C(10) = C(11)	1.309	(0) C(1)	(13) = H(13)	1.378(7)	for $[Na_2(H_2O)_6][(O)_6]$	CH3)4N]6[M	$O_6(C_8H_8AsNO_5)_2O_{18}$	(H ₂ O)] ₂
C(13) - C(14)	1.399	(6) C(1)	5)— C (16)	1.486 (8)	10H ₂ O: C 18.50, H	3.88, N 3.8	5, Mo 31.7, As 8.2,	Na 1.3%.
C(14)—H(14)	0.964	(21)			Analysis found: C 1	8.31, H 3.44	l, N 4.11, Mo 32.0, A	s 7.9, Na
O(1)	104 1	(2) 0(1)	$M_{0}(1) = O(2)$	08 0 (2)	1.3%. The structure	was solved	by Patterson methods	all non-
O(2) - Mo(1) - C	(2) 104.1	(2) O(1)	$M_{0}(1) = O(3)$	96.0(2)	H atoms were locate	d by direct r	nethods and difference	e Fourier
O(2) - Mo(1) - C	(4) 89.5	(2) O(3)	-Mo(1) - O(4)	73.4 (1)	synthesis. All calcu	lations wer	e performed using S	HELXTL
O(1)-Mo(1)-C	(5) 84.9	(2) O(2)—Mo(1)—O(5)	170.1 (2)	(Sheldrick 1985) on	an Eclinse	S/140 computer	
O(3)-Mo(1)-C	0(5) 78.6	(2) O(4)—Mo(1)—O(5)	81.9 (1)	(Sheraneng 1905) on	un Dempse (5/140 computer.	
O(1), -MO(1) - C	0(6) 101.0	(2) O(2)—Mo(1)—O(6)	102.6 (2)				
O(3) - Mo(1) - C	0(6) 142.4	(2) 0(4	-Mo(1)-O(6)	80.6 (2)	A computer output inc	luding lists of	structure factors anisot	ropic ther-
O(3) = MO(1) = C	v(0) /1.2	(1) O(3)	Mo(2) - O(4)	71.4 (1)	mal parameters. H-ator	n coordinates.	complete geometry and	difference
O(3) = MO(2) = C	n(7) 100.2	(2) O(4)	$M_{0}(2) = O(7)$	91.4 (2) 161 Q (2)	map data, has been dep	osited with the	e British Library Docum	ent Supply
O(7) - Mo(2) - C	(8) 103.8	(2) O(3)	$-M_0(2) - O(9)$	151.7(2)	Centre as Supplementa	ry Publication	n No. SUP 55828 (76 p	n.). Copies
O(4)-Mo(2)-O	(9) 86.7	(2) 0(7)—Mo(2)—O(9)	97.9 (2)	may be obtained throu	gh The Techn	ical Editor, Internationa	1 Union of
O(8)—Mo(2)—O	(9) 100.8	(2) O(3)—Mo(2)—O(10)	83.9 (2)	Crystallography, 5 Abb	- ey Square, Ch	ester CH1 2HU, England	i. [CIF ref-
O(4)Mo(2)O	(10) 72.8	(1) O(7)—Mo(2)—O(10)	161.6 (2)	erence: LI1006]		,	•
U(8) - Mo(2) - O(0) - Mo(2) - O(0)	(10) 93.5	(2) O(9	$M_{0}(2) = O(10)$	72.4 (2)				
O(10) = MO(3) = 0	(10) /1.5 O(11) 167.4	(∠) U(9 (2) O(9)	MO(3) - O(11)	99.1 (2) 100.0 (2)				
O(10) - Mo(3) - 0(10) - Mo(3) - 0(10) - Mo(3) - 0(10) - Mo(3) - 0(10	O(12) 873	(2) O(3)	$1) - M_0(3) - O(12)$	100.9(2) 103.0(2)	We are obliged	to Profess	or W. G. Klempere	er of the
O(9)-Mo(3)-O	(13) 148.9	(2) O(1)	0)-Mo(3)-O(13)	83.7 (2)	University of Illini	os (USA). '	This work was supp	orted by
		•	· · · ·		v	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

1302

a grant for a key research project from the State Science and Technology Commission, and the National Science Foundation of the People's Republic of China.

References

- Adams, R. D., Klemperer, W. G. & Liu, R. S. (1979). J. Chem. Soc. Chem. Commun. pp. 256-257.
- Larson, A. C. (1967). Acta Cryst. 23, 664-665.
- Sheldrick, G. M. (1985). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.
- You, X.-Z., Chen, J., Xu, Z. & Huang, J. (1989). Acta Cryst. C45, 413-415.
- Zonnevijlle, F. & Pope, M. T. (1979). J. Am. Chem. Soc. 101, 2731-2732.

Acta Cryst. (1993). C49, 1303-1307

Structures of Hexachloroniobate(V) Salts of the 1-Methylimidazole/1-Methylimidazolium and 2-Methylimidazolium Cations

BRUNO THERRIEN AND ANDRÉ L. BEAUCHAMP*

Département de chimie, Université de Montréal, CP 6128, Succ. A, Montréal, Québec, Canada H3C 3J7

(Received 11 May 1992; accepted 9 December 1992)

Abstract

Both salts contain approximately octahedral $[NbCl_6]^-$ anions with Nb—Cl bond lengths ranging from 2.326 (2) to 2.378 (2) Å. The 1-methylimidazole salt (I) contains the proton-bridged 1-methylimidazole/1-methylimidazolium cation, whereas the fully N-protonated 2-methylimidazole compound (II). Cohesion in the 2-methylimidazole compound (II). Cohesion in the crystals is achieved by dipolar interactions between Cl atoms of $[NbCl_6]^-$ and imidazole C—H groups for (I) and (II), as well as N—H…Cl hydrogen bonds for (II).

Comment

The reactions of NbCl₅ with N-heterocycles are currently being investigated in this laboratory. Two reaction pathways have been identified with pyridine (McCarley, Hughes, Boatman & Torp, 1963) and 7-azaindole (Poitras & Beauchamp, 1992), namely the formation of Nb^V adducts NbCl₅(L) and the reduction to Nb^{IV} with concomitant ligand oxidation. The two title compounds, (I) [(1-MeIm)₂H]-

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved [NbCl₆] and (II) [2-MeImH][NbCl₆], were among the products isolated from the reactions with 1-methylimidazole (1-MeIm) and 2-methylimidazole (2-MeIm). An X-ray investigation was undertaken in order to explain their different stoichiometries despite very similar chemical properties.

These compounds were present in the filtrates from reactions of NbCl₅ (~1 g) with the imidazole ligand in a 2:7 ratio in ~50 ml of benzene (I) or toluene (II). The reactions were run under a dry argon atmosphere in a Schlenk system, from NbCl₅ (Aldrich, stored in glove box) and 1-MeIm (Aldrich, dried over molecular sieves) or 2-MeIm (Aldrich, sublimed). Solvents were dried by distillation over Na. Red crystals of the 1-MeIm compound (I) appeared after two weeks in the benzene filtrate. Brown crystals of the 2-MeIm compound (II) were isolated after two months from the toluene filtrate. Both compounds are extremely moisture sensitive.

The single $[NbCl_6]^-$ anion in (I) occupies the inversion center at the cell origin. In (II), the eight anions are distributed over equipoints 4(e) [Nb(1), twofold axis] and 4(c) [Nb(2), inversion center]. These three independent [NbCl₆]⁻ anions have a nearly octahedral geometry. The octahedron is very regular for the two types of anions sitting on inversion centers: the cis Cl-Nb-Cl angles are in the region of 90.0 $(5)^{\circ}$, whereas the *trans* angles are 180° by symmetry. The anion lying on a twofold axis [Nb(1) of (II)] is slightly more distorted, with cis angles ranging from 87.80 (6) to 91.98 (6) $^{\circ}$ and *trans* angles of 177.55 (6) and 177.46 (6)°. The Nb-Cl distances, ranging from 2.326 (2) to 2.378 (2) Å (mean 2.349 Å), compare well with literature values (Hubert-Pfalzgraf, Postel & Riess, 1987; von Dübgen, Müller, Weller & Dehnicke, 1980; Preiss, & Reich, 1971; Shibaeva 1971; Preiss & Lobkovskaya, 1985).

Compound (I) contains the 1-methylimidazole/1methylimidazolium cation shown in Fig. 1. The two nearly coplanar 1-MeIm units are related by an inversion center. The bridging H(3) proton, whose position was deduced from a ΔF map, is disordered over two sites slightly off the inversion center. Thus, each of the imidazole units about the inversion center actually corresponds to equal populations of the neutral and monocationic forms. Attempts to refine a non-disordered model in space group P1